eLIFE

elifesciences.org

*For correspondence: lucas.
carey@upf.edu

Competing interests: The author
declares that no competing
interests exist.

Funding: See page 8

Received: 8 July 2015
Accepted: 26 October 2015
Published: 10 December 2015

Reviewing editor: Patrick
Cramer, Max Planck Institute for
Biophysical Chemistry, Germany

(©) Copyright Carey. This article is
distributed under the terms of
the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

SHORT REPORT a @

RNA polymerase errors cause splicing
defects and can be regulated by
differential expression of RNA
polymerase subunits

Lucas B Carey*

Department of Experimental and Health Sciences, Universitat Pompeu Fabra,
Barcelona, Spain

Abstract Errors during transcription may play an important role in determining cellular
phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA
polymerase and errors are amplified >1000-fold due to translation. However, current methods to
measure RNA polymerase fidelity are low-throughout, technically challenging, and organism
specific. Here | show that changes in RNA polymerase fidelity can be measured using standard
RNA sequencing protocols. | find that RNA polymerase is error-prone, and these errors can result
in splicing defects. Furthermore, | find that differential expression of RNA polymerase subunits
causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to
minimize the effect of these errors. These results suggest that errors caused by RNA polymerase
may be a major source of stochastic variability at the level of single cells.
DOI:10.7554/eLife.09945.001

The information that determines protein sequence is stored in the genome, but that information
must be transcribed by RNA polymerase and translated by the ribosome before reaching its final
form. DNA polymerase error rates have been well characterized in a variety of species and environ-
mental conditions, and are low — on the order of one mutation per 108-10"° bases per generation
(Lynch, 2011, Lang and Murray, 2008; Zhu et al., 2014). In contrast, RNA polymerase errors are
uniquely positioned to generate phenotypic diversity. Error rates are high (10°-107) (Gout et al.,
2013; Lynch, 2010; Shaw et al., 2002; de Mercoyrol et al., 1992), and each mRNA molecule is
translated into 2000-4000 molecules of protein (Schwanhiusser et al., 2011; Futcher et al., 1999),
resulting in the amplification of any errors. Likewise, because many RNAs are present
at an average of less than one molecule per cell in microbes (Pelechano et al., 2010) and in embry-
onic stem cells (Islam et al., 2011), an RNA with an error may be the only RNA for that gene; all
newly translated protein will contain this error. Despite the fact that transient errors can result in
altered phenotypes (Gordon et al., 2013, 2015), the genetics and environmental factors that affect
RNA polymerase fidelity are poorly understood. This is because current methods for measuring poly-
merase fidelity are technically challenging (Gout et al., 2013), require specialized organism-specific
genetic constructs (Irvin et al., 2014), and can only measure error rates at specific loci
(Imashimizu et al., 2013).

To overcome these obstacles | developed MORPhEUS (Measurement Of RNA Polymerase Errors
Using Sequencing), which enables measurement of differential RNA polymerase fidelity using exist-
ing RNA-seq data (Figure 1). The input is a set of RNA-seq fastq files and a reference genome, and
the output is the error rate at each position in the genome. | find that RNA polymerase errors result
in intron retention and that cellular mRNA quality control may reduce the effective RNA polymerase
error rate. Moreover, my analyses suggest that the expression level of the RPB9 Pol I
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elife digest Genes encode instructions to make proteins and other molecules. To issue an
instruction, a gene is first used as a template to make molecules of ribonucleic acid (called mRNAs
for short) in a process called transcription. An enzyme called RNA polymerase — which comprises
several protein subunits that all work together - is responsible for making the mRNA molecules.
Occasionally, this enzyme makes mistakes that lead to small changes in the instruction that is
produced. These mistakes are rare, but because cells make thousands of mRNAs, a single human
cell can make 10-100 transcription errors per second.

It has been difficult to study how often RNA polymerase makes mistakes and what effect these
mistakes have on organisms because the techniques available for research are labour-intensive and
technically challenging. Here, Lucas Carey demonstrates that it is possible to use a technique called
RNA sequencing to study the accuracy of RNA polymerase in human and yeast cells.

The experiments show that altering the levels of the different subunits of RNA polymerase in cells
can change how many mistakes are made during transcription. This suggests that cells may be able
regulate number of mistakes by controlling the production of specific subunits. Carey found that the
severity of the mistakes made by RNA polymerase depends on where the mistake is in the mRNA.
For example, errors in specific parts of the mRNA can alter how the whole instruction is edited later,
while others might make only a tiny change to the protein encoded by the gene. Carey also found
evidence that the instructions encoded by genes may have evolved in such a way to minimise the
effect of any errors on their roles in cells.

RNA sequencing is less labour-intensive than other methods used to study the accuracy of RNA
polymerase and is already used to address other research questions on a wide variety of different
organisms. Therefore, Carey's findings will make it easier to study what genes or environmental
factors influence the number of errors made during transcription. A major challenge for the future is
to find out if the mistakes made by RNA polymerase can lead to cancer and other human diseases.
DOI:10.7554/eLife.09945.002

subunits Rpb9 and Dst1 (TFIIS) determines RNA polymerase fidelity in vivo. Because it can be run on
any existing RNA-seq data, MORPhEUS enables the exploration of a previously unexplored source
of biological diversity in microbes and mammals.

Technical errors from reverse transcription and sequencing, and biological errors from RNA poly-
merase look identical (single-nucleotide differences from the reference genome). Therefore, a major
challenge in identifying single-nucleotide polymorphisms (SNPs) and in measuring changes in poly-
merase fidelity is the reduction of technical errors (Kleinman and Majewski, 2012; Pickrell et al.,
2012; Li et al., 2011) (Figure 1). First, | map full-length (untrimmed) reads to the genome and dis-
card reads with indels, with more than two mismatches, that map to multiple locations in the
genome, and that do not map end to end along the full length of the read. Next, | trim the ends of
the mapped reads, as alignments are of lower quality along the ends, and the mismatch rate is
higher, especially at splice junctions. | also discard any cycles within the run with abnormally high
error rates, and bases with low Illlumina quality scores (Figure 1—figure supplement 1). Finally,
using the remaining bases, | count the number of matches and mismatches to the reference genome
at each position in the genome. | discard positions with identical mismatches that are present more
than once, as these are likely due to subclonal DNA polymorphisms or sequences that lllumina mis-
calls in a systematic manner (Meacham et al., 2011) (Figure 1—figure supplement 2). The result is
a set of mismatches, many of which are technical errors and some of which are RNA polymerase
errors. In order to determine if RNA-seq mismatches are due to RNA polymerase errors, it is neces-
sary to identify sequence locations in which RNA polymerase errors are expected to have a measur-
able effect, or situations in which RNA polymerase fidelity is expected to vary.

| reasoned that RNA polymerase errors that alter positions necessary for splicing should result in
intron retention, while sequencing errors should not affect the final structure of the mRNA
(Figure 2a). However, mutations in the donor and acceptor splice sites also result in decreased
expression (Jung et al., 2015), and therefore are difficult to measure using RNA-seq. Therefore, |
used chromatin-associated and nuclear RNA from Hela and Huh7 cells (Dhir et al., 2015), and
extracted all reads that span an exon—intron junction for introns with canonical GT and AG splice
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Figure 1. A computational framework to measure relative changes in RNA polymerase fidelity. (a) Pipeline to identify potential RNA polymerase errors
in RNA-seq data. High quality full-length RNA-seq reads are mapped to the reference genome or transcriptome using bwa, and only reads that map
completely with two or fewer mismatches are kept. (b) Then 10 bp from the front and 10 bp from the end of the read are discarded as these regions
have high error rates and are prone to poor quality local alignments. (c) Errors that occur multiple times (purple boxes) are discarded, as these are likely
due to subclonal DNA mutations or motifs that sequence poorly on the HiSeq. Unique errors in the middle of reads (cyan box) are kept and counted.
DOI: 10.7554/elife.09945.003

The following figure supplements are available for Figure 1:

Figure supplement 1. Cycle-specific error rates and better differentiation of genetically determined error rates using base quality value cutoffs.

DOI: 10.7554/eLife.09945.004

Figure supplement 2. RNA-seq data are enriched for mismatches to the reference genome that occur far more often than expected.

DOI: 10.7554/eLife.09945.005

sites, and measured the RNA-seq mismatch rate at each position. | find that errors at the G and U in
the 5’ donor site and at the A in the acceptor site are significantly enriched relative to errors at other
positions (Figure 2b), and to errors in exonic trinucleotides at splicing motifs in the human genome
(Figure 2—figure supplement 1) suggesting that RNA polymerase mismatches can result in changes
in transcript isoforms. The ability of RNA polymerase errors to significantly affect splicing has been
proposed (Fox-Walsh and Hertel, 2009) but never previously measured.

RPB? is known to be involved in RNA polymerase fidelity in vitro and in vivo (Irvin et al., 2014;
Knippa and Peterson, 2013). Therefore, | reasoned that cell lines expressing low levels of RPB9
would have higher RNA polymerase error rates. Consistent with this, | find that RPB9 expression
varies eightfold across the ENCODE cell lines, and this expression variation is correlated with the
RNA-seq error rate (Figure 2c, Figure 2—figure supplement 2). This suggests that low RPB9
expression may cause decreased polymerase fidelity in vivo.

In addition, export of mRNAs from the nucleus involves a quality-control mechanism that checks
if MRNAs are fully spliced and have properly formed 5 and 3’ ends (Lykke-Andersen, 2001). |
hypothesized that mRNA export may involve a quality control that removes mRNAs with errors. |
used the ENCODE dataset in which nuclear and cytoplasmic poly-A + mRNAs were sequenced; thus
| can compare nuclear and cytoplasmic fractions from the same cell line grown in the same condi-
tions and processed in the same manner. | find that the nuclear fraction has a higher RNA polymer-
ase error rate than does the cytoplasmic fraction (Figure 2c,d), suggesting that either that nuclear
RNA-seq has a higher technical error rate or that the cell has mechanisms for reducing the effective
polymerase error rate by preventing the export of mMRNAs that contain errors.

Rpb9 and Dst1 are known to be involved in RNA polymerase fidelity in vitro, yet there is conflicting
evidence as to the role of Dst1 in vivo(Shaw et al., 2002; Irvin et al., 2014; Knippa and Peterson,
2013; Nesser et al., 2006; Walmacq et al., 2009; Kireeva et al., 2008). Part of these conflicts may
result from the fact that the only available assays for RNA polymerase fidelity are special reporter
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Figure 2. RNA polymerase errors cause intron retention and error rates are correlated with RPB? expression. (a) RNA polymerase errors at the splice
junction should result in intron retention, as DNA mutations at the 5" donor site are known to cause intron retention. (b) Shown are the RNA-seq
mismatch rates at each position relative to the 5 donor splice site, for sequencing reads that span an exon-intron junction. Mismatch rates from
chromatin-associated and nuclear RNAs are higher at the 5" and 3’ splice sites, suggesting that RNA polymerase errors at this site result in intron
retention. (c) For all ENCODE cell lines, RPBY expression was determined from whole-cell RNA-seq data, and the RNA-seq error rate was measured
separately for the cytoplasmic and nuclear fractions. (d) The RNA-seq error rate is higher (paired t-test, p=0.0019) in the nuclear than the cytoplasmic
fraction, suggesting that quality-control mechanism may block nuclear export of low quality mRNAs.

DOI: 10.7554/eLife.09945.006

The following figure supplements are available for Figure 2:

Figure supplement 1. RNA-seq mismatch rates for all trinucleotides in chromatin-associated and nuclear RNAs.
DOI: 10.7554/eLife.09945.007

Figure supplement 2. RBP9 expression negatively correlates with RNA-seq mismatch rates.

DOI: 10.7554/eLife.09945.008

strains that rely on DNA sequences known to increase the frequency of RNA polymerase errors. While
| found that RPB9 expression correlates with RNA-seq error rates in mammalian cells, correlation is
not causation. Furthermore, differences in RNA levels do not necessitate differences in stoichiometry
among the subunits in active Pol Il complexes. In order to determine if differential expression of RPB9
or DST1 are causative for differences in RNA polymerase fidelity in vivo, | constructed two yeast strains
in which | can alter the expression of either RPB9 or DST1 using B-estradiol and a synthetic transcrip-
tion factor that has no effect on growth rate or the expression of any other genes (Mcisaac et al.,
2014, 2013). | grew these two strains (Z3EV,-RPB9? and Z3EV,,-DST1) in different concentrations of -
estradiol and performed RNA-seq. | find that cells expressing low levels of RPB9 have high RNA poly-
merase error rates (Figure 3a). Likewise, cells with low DST1 have high error rates (Figure 3a). The
increase in errors rate is not a property of cells defective for transcription elongation (Figure 3—fig-
ure supplement 1). The increase in error rates due to mutations in Rpb9 and Dst1 have not been
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Figure 3. RNA polymerase error rate is determined by the expression level of RPB? and DST1. (a) RNA-seq error rates | re-measured for two strains
(Z3EVpr-RPBY, black points, Z3EVpr-DST1, blue points) grown at different concentrations of B-estradiol. The points show the relationship between RPB9
expression levels (determined by RNA-seq) and RNA-seq error rates. The blue points show RPB9 expression levels for the Z3EVpr-DST1 strain, in which
DST1 expression ranges from 16 fragments per kilobase per million (FPKM) at 0 nM B-estradiol to 120 FPKM native expression to 756 FPKM at 25 nM -
estradiol. Low induction of both DST1 or RPB9 results in high RNA-seq error rates (red box), while wild-type and higher induction levels result in low
RNA-seq error rates (black box). (b) Across all genes, the intron retention rate is higher in conditions with low RNA polymerase fidelity (t-test between
high and low error rate samples, p=0.029), consistent with the hypothesis that RNA polymerase errors result in splicing defects. (c) The error rate for
each of the 12 single base changes are shown for induction experiments that gave high (red) or low (black) RNA-seq error rates. Transitions (G<—>A,
C<—>U) are marked with green boxes and transversions (A<—>C, G<->U) with purple.

DOI: 10.7554/¢Life.09945.009

The following figure supplements are available for Figure 3:

Figure supplement 1. Mutations that affect transcription elongation do not affect measured RNA-seq mismatch frequencies.
DOI: 10.7554/eLife.09945.010

Figure supplement 2. Decreases in RPB? and DST1 expression in yeast results in more single base insertions in RNA-seq data.
DOI: 10.7554/eLife.09945.011

robustly measured, however, there are some rough numbers. Here, the measured increase in error
rate is 13%, while the measured effect of Rpb9 deletion in vitro is fivefold (Walmacq et al., 2009) and
in vivo following reverse transcription is 30% (Nesser et al., 2006). If 2% of the observed mismatches
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are due to RNA polymerase errors, a fivefold increase in polymerase error rate results in a 10%
increase in measured mismatch frequency; this is consistent with RNA polymerase fidelity of 10°-10"
and overall RNA-seq error rates of 10*. Note that in our assay cells still express low levels or RPB9,
and we therefore expect the increase in error rate to be lower, suggesting that RNA polymerase errors
constitute 5-10% of the measured mismatches. Our ability to genetically control the expression of
DST1 and RPB9, and measure changes in RNA-seq error rates is consistent with MORPhEUS measur-
ing RNA polymerase fidelity. In addition, we observe more single-nucleotide insertions in the RNA-
seq data from the high error rate samples, suggesting that depletion of RPB9 and DST1 results in
increased insertions in transcripts, but not increased deletions (Figure 3—figure supplement 2).
Finally, genetic reduction in RNA polymerase fidelity results in increased intron retention, consistent
with RNA polymerase errors causing reduced splicing efficiency (Figure 3b).

A unique advantage of MORPhEUS is that it measures thousands of RNA polymerase errors across
the entire transcriptome in a single experiment, and thus enables he complete characterization of the
mutation spectrum and biases of RNA polymerase. | asked how altered RPB9 and DST1 expression lev-
els affect each type of single-nucleotide change. | find that, with decreasing polymerase fidelity, transi-
tions increase more than transversions, and that C—U errors are the most common (Figure 3c). This
result, along with other sequencing based results (Gout et al., 2013), have shown that DNA and RNA
polymerase have broadly similar error profiles (Zhu et al., 2014); it will be interesting to see if all poly-
merases share the same mutation spectra, and if this is due to deamination of the template base, or is
a structural property of the polymerase itself. Interestingly, | find that coding sequences have evolved
so that errors are less likely to produce in-frame stop codons than out-of-frame stop codons, suggest-
ing that natural selection may act to minimize the effect of polymerase errors (Figure 4).

Here | have presented proof that relative changes in RNA polymerase error rates can be mea-
sured using standard Illlumina RNA-seq data. Consistent with previous work in vivo and in vitro, | find
that depletion of RPB9 or Dst1 results in higher RNA polymerase error rates. Furthermore, | find that
expression of RPB9 negatively correlates with RNA-seq error rates in human cell lines, suggesting
that differential expression of RPB9 may regulate RNA polymerase fidelity in vivo in humans. In addi-
tion, consistent with the errors detected by MORPhEUS being due to RNA polymerase and not tech-
nical errors, in reads spanning an exon-intron junction, the measured error rate is higher at the 5’
donor splice site, suggesting that RNA polymerase errors result in intron retention. Because it can
be run on existing RNA-seq data, | expect MORPhEUS to enable many future discoveries regarding
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Figure 4. In-frame stop codons are less likely to be created by polymerase errors. For all genes in yeast, | calculated the number of codons which are
one polymerase error from a stop codon. (a) Fewer in-frame codons can be turned into a stop codon by a single-nucleotide change, compared to out-
of-frame codons. (b) Codons that are one error away from generating an in-frame stop codon are more likely to be found at the ends of the open
reading frames (ORFs), compared to the beginning of the ORF.

DOI: 10.7554/¢eLife.09945.012
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both the molecular determinants of RNA polymerase error rates and the relationship between RNA
polymerase fidelity and phenotype.

Materials and methods

Counting RNA polymerase errors in already aligned ENCODE data

Much existing RNA-seq data is available as bam files aligned to the human genome. In order to
bypass alignment, which is the most computationally expensive step of the pipeline, | developed a
method capable of using RNA-seq reads aligned with spliced aligners. First, in order to avoid
increased mismatch rates at splice junctions due to alignment problems with both spliced and
unspliced reads, | used SAMtools (Li et al., 2009) and awk to remove all alignments that do not align
along the full length of the genome (e.g., for 76 bp reads, only reads with a CIGAR flag of 76 M).
The remaining reads weretrimmed (bamUtil, trimBam) to convert the first and last 10 bp of each
read to Ns and set the quality strings to ‘!'. | then used samtools mpileup (-q30 —-C50 —Q30) and cus-
tom perl code to count the number of reads and number of errors at each position in genome. Posi-
tions with too many errors (e.g., more than one read of the same nonreference base) were not
counted.

Measurement of error rates at splice junctions

| used the University of California Santa Cruz (UCSC) table browser (Karolchik, 2004) to download
two bed files: hg19 EnsemblGenes introns with -10 bp flanking from each side, and another file with
the introns and +10 bp flanking on either side. | then used bedtools (Quinlan and Hall, 2010) (bed-
tools flank -b 20 -I 0 and bedtools flank - 20 -b 0) to generate bed files with intervals that contain the
splicing donor and acceptor sites, respectively. In addition, | used bedtools getfasta on the +10 bp
flanking bed file to keep only introns flanked by GT and AG donor and acceptor sites. The final result
is a pair of bam files with intervals centered on the splicing donor or acceptor sites. | used this new bed
file to count error rates around each splice junction. The error rate at each position (e.g., -10, -9, -8,
etc. from the G at the 5’ donor site) is the sum of all errors at that position, divided by the sum of all
reads. Positions are relative to the splicing feature, not to the genome, as error rates at any single
genomic position are dominated by sampling bias. Per mono-, di-, and trinucleotide background error
rates were-calculated using the same scripts, but without limiting mpileup to the splice junctions.

Strain construction and RNA sequencing for RPB9 and DST1 strains
The parental strain DBY12394 (Mcisaac et al., 2013) (GAL2 + s288c repaired HAP1, ura3A, leu2A0::
ACT1pr-Z3EV-NatMX) was transformed with a polymerase chain reaction (PCR) product (KanMX-
Z3EVpr) to generate a genomically integrated inducible RPB9 (LCY143) or DST1 (LCY142). To induce
various levels of expression, strains were re-grown in YPD + 0-, 3-, 6-, 12-, or 25-nM B-estradiol
(Sigma, St. Louis, MO, USA, E4389) for more than 12 hr to a final ODggo of 0.1 — 0.4. Cellular RNA
was extracted using the Epicenter MasterPure RNA Purification Kit, and lllumina sequencing libraries
were prepared using the Truseq Stranded mRNA kit, and sequenced on an HiSeq2000 with at least
20,000,000 50 bp sequencing reads per sample.

| used bwa (Li and Durbin, 2009) (-n 2, to permit no more than two mismatches in a read) to align
the yeast RNA-seq reads to the reference genome, and trimBam from bamUtil to mask the first and
last 10 bp of each read. | used samtools mpileup (Li et al., 2009) (-q 30 -d 100000 -C50 -Q39) to
count the number of reads and mismatches at each position in the genome, discarding low confi-
dence mapping, reads that map to multiple positions, and low quality reads. Duplicate reads can be
removed from the fastq file if the coverage is low enough so that all
reads that map to identical genome coordinates are expected be PCR duplicates from the same
RNA fragment. This is the case for low coverage paired-end reads with a variable insert size, but not
for very high coverage datasets or single-ended reads.

Pre-existing RNA-seq datasets

For the intron retention analysis in human cells, data are from NCBI SRA PRIJNA253670. Data for the
elc4 and spt4 analysis are from PRINA167772 and PRINA148851, respectively. For RPB9Y correlation,
undefined data (SRA PRINA30709) are all from the Gingeras lab at CSHL.
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